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Abstract. The cyclic cluster model (CCM) was introduced earlier for defect calculations in the
framework of semi-empirical quantum chemical methods with only two-centre interactions. The
CCM represents a good balance between an approximate description of localized and extended
states, offering most of the advantages of supercell methods at the cost of a molecular cluster
calculation. This paper presents the adaptation of the CCM to anab initio density functional
Hamiltonian, incorporating the local density approximation, norm-conserving pseudopotentials
and a Gaussian basis. Test results on perfect diamond cyclic clusters illustrate the advantages
of the CCM.

1. Introduction

Structural modelling of defects and surfaces in semiconductors is one of the most important
practical challenges to computational solid state physics. The local density approximation
(LDA) to density functional theory [1, 2] has proven very successful in describing periodic
many-electron systems. Imperfections of the crystal, however, lift the ideal periodicity and,
thereby, the principal basis of conventional band theory. In the supercell model (SCM) the
periodicity is artificially restored in a sufficiently large unit cell (LUC) around the defect
[3]. However, in the case of local defects, the commonly used and very convenient plane
wave expansion for one-electron states may prove to be very time consuming, especially for
light impurities with incompletely screened cores. As an alternative, one-electron states may
be expanded over a basis of localized orbitals (e.g., linear combination of Gaussian type
orbitals, LCGTO), but such an SCM calculation becomes prohibitively expensive [4, 5]. As
a consequence, LCGTO–LDA calculations are usually applied to a simple molecular cluster
model (MCM [6]) of the defective solid [7]. The crystalline background is accounted for
by hydrogen atoms saturating the dangling bonds on the cluster surface. This has several
disadvantages.

— The ‘crystalline’ states are poorly described. The electronic states of the perfect MCM
cannot be assigned to states of the perfect crystal band structure, and the convergence of
the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular
orbital) energies to the valence band (VB) and conduction band (CB) edges with the size
of MCM is slow and oscillatory upon increasing the size of the MCM [10].

— The point group symmetry is reduced even without introducing the defect (fromOh

to at leastTd in the case of group IV and III–V semiconductors), and the uniformity of the
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sites is lost. The environment of an impurity in different sites may change considerably
(due to the limitation of the cluster size). The comparison of the energy in the different
configurations then becomes problematic.

— The bonds to hydrogen atoms on the cluster surface are poor mechanical substitutes
for the bonds in the crystalline background. They also create a dipole layer on the surface
of the MCM, shifting ionization energies and heats of formation in a manner which is hard
to account for. Also, this dipole layer induces charge transfer between concentric shells of
the cluster, even if it consists of nominally equivalent atoms.

This paper presents a solution to these problems by adapting the cyclic cluster model
(CCM) [8] to LCGTO–LDA calculations. Section 2 describes the CCM and section 3
gives its adaptation to LCGTO–LDA theory. In section 4, bench-mark results are given for
diamond to show that CCM calculations are an acceptable alternative to SCM ones even in
reproducing the extended states of the crystal.

2. The cyclic cluster model

Several attempts have been made to eliminate the disadvantages of the MCM (while retaining
its simplicity) by applying the Born–Ḱarmán cyclic boundary conditions directly to a cluster,
i.e. to a ‘crystal’ withN = 1 unit cell (see e.g. [9–11]). This can be done by modifying the
matrix of interatomic distance vectors while the calculations are still done in direct space.
The total point group symmetry of the perfect crystal is preserved; the system remains
uniform and free from surface dipoles. The coincidence of the cyclic boundary condition
with the Bloch condition forN = 1 means that all one-electron states belong to the centre
of the Brillouin zone (BZ), i.e.,K = 0. It must be realized that choosing an LUC means
a reduced, small Brillouin zone (SBZ). The points of the SBZ represent a set of primitive
k vectors. It was recognized [12] that choosing an LUC as a symmetric multiple of the
primitive unit in an appropriate way may reduce the full star of primitivekq vectors into
the centre of the SBZ so that they satisfy the condition∑

q

ω(kq)
∑
|R|=Rm

eikq ·R = 0 n = 1, 2, . . . mmax (1)

with theω(kq) weighting factors equal to the number of branches in their star. The inner
summation in (1) goes over lattice vectors of equal length. (1) was given by Chadi and
Cohen [13] to select so-called specialk point sets which give a good approximation to the
electron density by substituting the integration over theentire BZ by a finite weighted sum,

n(r) =
∫
BZ

nk(r) dk ≈
∑
q

ω(kq)nkq (r) (2)

where

nk(r) =
∑
ij

bij (k)ϕi(r)ϕj (r) bij (k) = 2
occupied∑

λ

c∗iλ(k)cjλ(k) (3)

is the electron density if the one-electron states are expanded as

ψλ =
∑
i

ciλ(k)ϕi(r). (4)

The approximation in (2) improves with increasingmmax . (N.B. Usually, thosek points for
which the inner summation yields zero are referred to as special. However, it is sufficient
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if a set ofkq vectors satisfies the entire equation.) This concept was used in semi-empirical
SCM calculations [12, 14], but the idea suits the cyclic cluster model equally well [15].

The cyclic cluster model (CCM) is defined as the application of cyclic boundary
conditions to an LUC chosen in the way described above to represent a specialk point
summation performed implicitly [8]. The CCM is practically aK = 0 SCM calculation with
interactions neglected beyond the boundary of the Wigner–Seitz (WS) cell corresponding
to the LUC. On the one hand, this limits the accuracy of reproducing extended states
but, on the other, it excludes most of the artificial defect–defect interactions of the SCM.
Therefore, the CCM is a well balanced approximation, unifying advantages of SCM (full
point group symmetry, homogeneous environment for the defect, no surface states or dipole
layer, unambiguous assignment of background states to real extended states) with the
computational simplicity of MCM.

The main difficulty with CCM is the handling of interactions involving atoms on the
surface of the WS cell without loss of symmetry. In semi-empirical quantum chemical
approximations, where the basis is assumed to be orthogonal and only two-centre interactions
are involved, this problem was solved by a simple averaging procedure [8, 11, 15]. Such
CCM calculations were successfully applied in describing the behaviour of H and O in
crystalline silicon (see, e.g., [16] and [17]). In the case of the LDA, however, the GTO
basis is not orthogonal, and three-centre interactions have to be dealt with.

3. The CCM in the LCGTO–LDA formalism

The basic equation of the LDA is the Kohn–Sham equation [2]:[
−1

2
1+ Vion(r)+

∫
n(r′)
|r − r′| d

3r ′ + µxc
]
ψλ(r) = ελψλ(r) (5)

with the exchange–correlation potential

µxc = d[n(r)Exc(n(r))]

d[n(r)]
. (6)

The exchange–correlation energy density is expressed as (see, e.g., [18])

Exc = A[n(r)]S0. (7)

Using expansion (4), (5) can be turned into a set of algebraic equations which has to be
solved iteratively (because of (2) and (3)) until the total energy becomes self-consistent
(SCF). The total energy can be expressed as a functional of the electron density [1],

E[n(r)] = T [n(r)] +
∫
Vion(r) d3r + 1

2

∫
n(r)n(r′)
|r − r′| d3r ′ d3r +

∫
n(r)Exc d3r. (8)

The potential energy of the valence electrons in the field of the ionic cores,Vion(r), is usually
given by norm-conserving pseudopotentials but that is not necessary. If full potentials are
used, of course, the core electrons needed to be included. The third term in (8), the Hartree
energy, contains, in principle, four-centre integrals but those can be avoided by fitting the
electron density, in each step of the SCF iteration, by an independent expansion,

ñ(r′) =
∑
k

ckgk(r
′) (9)

so that the Hartree energy for the difference|n(r)− ñ(r′)| is minimized [7].
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Let both the basis functions for the wave function in (4) and the basis functions of the
fitted electron density in (9) be expressed as sums of GTOs:

ϕi(r) =
∑
l

χi(r −Ri − Âl) (10)

gk(r
′) =

∑
l

hk(r
′ −Rk − Âl) (11)

wherei andk run over atoms in the WS cell corresponding to the LUC, whilel gives all
possible repetition of the LUC defined by the matrix of unit vectorsÂ.

In the case of two-centre terms, such as the overlap integral, the cyclic boundary
condition is realized (assuming one of the centres at the centre of the real WS cell, i.e.
at l = 0) by

〈ϕi | ϕj 〉 =
min|Ri−(Rj+Âl)|∑

l

〈χi(r −Ri ) | χj (r −R− Âl)〉 (12)

where the summation contain only those terms for which the distance is minimal (one term,
or several of equal value). In three centre terms of the CCM, like those related to the ionic
potential (and similarly, the ones related to the Hartree term with functionsgk instead of
the potential),

Vion(r) =
∑
k

Vk =
∑
k

∑
l

V (r −Rk − Âl) (13)

〈ϕiϕj | Vk〉 =
∑
l,l′

∗〈χi(r −Ri )χj (r −Rj − Âl) | V (r −Rk − Âl′)〉 (14)

where the summation
∑∗ is carried out in such a way that only terms with

min
l′
|Ri − (Rk + Âl′)| ∩min

l′
|(Rj + Âl)− (Rk + Âl′)| (15)

remain, withl chosen again to satisfy

min
l
|Ri − (Rj + Âl)|. (16)

Conditions (15) and (16) have been incorporated within a variant of the AIMPRO program
code by Jones and Briddon [20].

By implementing CCM in the overlap matrix, in fact, a small overlap of an atomic
orbital with another on a distant atom in the real LUC is replaced by a bigger overlap
with one on an equivalent atom in a repeated LUC. If the cluster is not large enough this
may cause the overlap matrix to become non-positive definite, especially if the expansions
(10) and (11) have been chosen to describe free atomic wave functions (as in the AIMPRO
code). Therefore, the orbital exponents of the GTOs (defined in [20]) have been refitted to
ensure that

〈χi(r −Ri ) | χj (r −Rj − Âl)〉 6 10−14 (17)

for every l allowed by the condition (16). This is justified by the common knowledge that
atomic wave functions ‘contract’ in bonding. Sometimes, the GTO expansion is determined
by using a localization potential in the atomic calculation (see e.g. [19]). A similar procedure
to optimize the basis functions is under development.
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4. Results

Test calculations have been performed for diamond in order to compare results of a perfect
CCM to an MCM calculation on a cluster with comparable size on one hand, and with the
best LCGTO–LDA band structure on the other. A 32-atom cyclic cluster has been used,
with

Â = a
[−1 1 1

1 −1 1
1 1 −1

]
(18)

(a is the lattice constant), representing the stars of the wave vectors0[000], X[100], and
6[ 1

2
1
20] (in 2π/a units). These satisfy (1) up tommax = 6.

Comparison was made between a tetrahedral MCM, C35H36, and the CCM C32 (figure 1).
In both cases, four GTOs for every carbon valence shell orbital (i.e. 16 for each atom) were
used with a contracted basis for hydrogens (two GTOs for the s and p orbitals but with
fixed ratios, i.e. in effect four orbitals per hydrogen). The calculations have been carried
out on an IBM RISC 6000/32H work station with 64 Mbytes of RAM. The comparison of
electronic structures and the time required to obtain them can be seen in figure 2 and table 1.
The one-electron states of the CCM were assigned to the appropriate primitivek vectors
(crosses). The band structure (continuous lines) was obtained by graphic interpolation, in
order to guide the eye. The one-electron energies in both calculations have been rigidly
shifted to have the HOMO at zero energy. Beside the bands being narrower by∼2 eV
and the gap being wider by 0.6 eV in the MCM (cf the real bands in table 2), the CCM
offers the advantages of correct symmetry and degeneracy of electronic states as well as
zero charge on every atom, while the computational time is substantially less (!) than that
of the MCM.

Table 1. Comparison of the running times for C32 CCM and C35H36 MCM calculations on an
IBM RISC 6000/32H work station using four GTOs for both s and p orbitals of carbon, and a
contracted basis for hydrogens.

C32 (CCM) C35H36 (MCM)

Basis set C(4, 4) C(4, 4)+ H(2, 3)contracted
Setup of firstĤ 447 s 593 s
1 step in SCF procedure 190 s 378 s
No of cycles till conv. 13 13
Total time 2916 s 5507 s

With respect to computational time, the CCM is obviously even more favourable if
compared to an SCM calculation. It is also better suited for describing localized orbitals
of isolated defects, since direct interactions between repeated defects are neglected. A
remaining question is how accurately the CCM is able to describe extended states compared
to SCM calculations. Therefore, our CCM results were also compared to the band structure
obtained from a calculation [4] with the same pseudopotential but with a much larger basis
set (ten GTOs for every valence shell orbital, i.e. 40 for each atom). Since no basis set
with polarization functions is yet available for the AIMPRO code, the effect of the basis
size was tested by contracting our basis set, i.e. reducing the effective variational freedom
to four orbitals per carbon atom. The results are shown in table 2.

The C32 CCM calculation with 16 AO/atom reproduces the valence band rather well.
The minimum of the conduction band, however, is obtained at0. It is known that the
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(a)

(b)

Figure 1. The C32 CCM (a) and the C35H36 MCM (b) of diamond. Small empty circles
represent the hydrogen atoms.

reproduction of the indirect gap requires a large basis. If results with the 4 AO/atom basis
are compared to the one with 16 AO/atom, it can be seen that the change in the energy
of the X1C state is by far the biggest. It shifts downwards by 6.95 eV in the case of the
16 AO/atom basis relative to the 4 AO/atom case, while015 shifts down by only 2.38 eV.
From that it is clear that the direct gap in our CCM calculation is only a basis set effect.
Since increasing the cluster size increases also the basis for the extended states, a 64-atom
[22] CCM calculation has been performed with the 16 AO/orbital basis set, using the SGI
computer at the Supercomputer Center of the Florida State University. The only major
change, relative to the 32-atom CCM, is a further improvement at the bottom of the CB.
Since other values change by less than 30% of the change at X1c, this proves that the latter
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Figure 2. (a) The energies of one-electron states from the C32 CCM (denoted with×) can be
assigned to particular primitivek vectors (0, X, 6). The bands are interpolated graphically to
facilitate comparison with the band structure. (b) In the case of MCM the one-electron states
cannot be assigned to states in the band structure. Due to the lower symmetry (Td), only singly,
doubly and triply degenerate states appear. The degeneracy is indicated by the length of the
lines.

Table 2. Comparison of the CCM results to those of a full band structure calculation [4] and
of experiments [21] for diamond. Calculations were performed for the experimental lattice
constant, 3.57̊A.

LDA

Full band struct.
Symm. Expt. [20] calc. [4] C64 C32 C32

point diamond 40 AO/atom 16 AO/atom 16 AO/atom 4 AO/atom

01 −21.03 −21.68 −21.21 −21.12 −17.97
0′25 0 0 0 0 0
0′15 6.02 5.59 5.60 5.37 7.75
0′2 13.41 13.21 13.55 13.85 14.94
X1v −12.43 −12.90 −12.66 −12.80 −11.4
X4v −6.27 −6.43 −6.36 −6.48 −6.33
X1c 5.91 4.65 5.34 6.25 13.20
X4c — 16.87 16.49 16.50 17.13
L′2 — −15.79 −15.52 — —
L1v −13.09 −13.73 −13.25 — —
L′3 −2.82 −2.86 −2.92 — —
L3 9.23 8.47 9.13 — —
L1c 9.58 8.90 9.46 — —

depends primarily on the basis set.
In conclusion, we have shown that adapting the cyclic cluster model to the LCGTO–

LDA method provides a framework for defect calculations which is more economic than full
supercell or even molecular cluster model calculations, but still provides a good description
of the extended states of the host while preserving the advantage of LCGTO expansions in
reproducing localized states.
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